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Semiflexible polymers, such as DNA, in the presence of a condensing agent often form toroids. This is due
to a balance between bending and surface area free energy penalties. Here we show why in experiments all the
toroids have been found to have similar physical size. We also introduce a novel morphology, that of the
hollow sphere, which is favored for long polymer chains. This offers the possibility of encapsulating material
inside a “vesicle” made of semiflexible polymers. We also consider the case of many such polymer chains
placed in a poor solvent. We show a transition between two morphologies occur on increasing concentration of
polymer chains, from a thickened toroid to a spherical globule.
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I. INTRODUCTION

Perhaps the most important and fundamental problem in
polymer science is the conformation of a polymer chain un-
der different solvent conditions. For “fully flexible” chains,
which suffer negligible free energy penalty upon bending,
the solution to this problem has long been knownf1g. In
good solvents the chain is a swollen random coil, whereas in
poor solvents where the monomer-monomer interactions are
attractive the chain forms a fairly uniform spherical globule.
This kind of behavior is seen in wide range of common
synthetic polymers. However, many polymers are in fact
“semiflexible;” i.e., they incur a substantial free energy pen-
alty when bent. These include several synthetic polymers and
almost all biopolymers, such as DNA and actin. The confor-
mations of these chains are much less well understood than
their more flexible cousins. Indeed, one of the most remark-
able properties of DNA is the formation of toroids under
poor solvent conditionsf2–18g. This can be achieved by us-
ing a single solvent or by using a “condensing agent,” which
acts as a glue between the chain segments.

The usual argument for why toroids form is that in a
toroid the chain suffers less bending energy than in a sphere,
where presumably very tight bends must take place. The size
of the toroid is then given as a balance between the bending
energy, which favors a weak bend and hence large toroids,
and the surface energy, which favors a toroid as compact as
possiblef15g. At least two major problems remain for single
stiff chains. The first is that the size of all the toroids found
experimentally is almost the same and varies very weakly
with the length of chain involved. The second is that it is not
clear that a toroid is the lowest-energy configuration. In this
paper we show that these two problems are related. In fact
we show that for long enough chains a toroid is not the best
configuration and that a hollow sphere is of lower free en-
ergy. This fact means that the range of chain length over
which toroids are stable is fairly small. For small chain
lengths a “straight line” is the best configuration, while for
longer lengths the hollow sphere is preferable. This fact,
combined with the very weakL1/5 dependence of the toroidal

radius on chain length explains why toroids all have approxi-
mately the same size. The new “hollow sphere” morphology
is of course of interest in itself. It suggests that vesicles could
be made of semiflexible chains. Vesicles are already impor-
tant in problems of drug delivery, and this novel form of
vesicle might have interesting practical properties—for in-
stance, the wall thickness can be readily controlled by chang-
ing the length of the polymer.

Another problem of interest is the conformation of many
stiff polymer chains under the effect of a condensing agent or
in a poor solvent. Given that one polymer chain will form a
toroidal morphology the obvious question to ask what mor-
phology will many chains form? Will it still be a toroid,
albeit thickened up, or can another morphology be stable. On
surface energy grounds, it is clear a spherical geometry
would be a better geometry. We therefore develop a model of
a spherical globuleswithout any holes in the centerd and
compare its free energy with that of a toroid. We show there
exists a crossoversin number of chainsd from a toroidal mor-
phology to a spherical globule.

We consider a semiflexible chain of lengthL with bending
constante, such that when the chain is bent with radius of
curvatureR a bending penalty of 1/2eLR−2 is incurred. We
assume, as a concrete example, that the chain cross section is
a square of sidea, so that the total volume of the chain is
V=La2. The chain is immersed in a poor solvent and the
chain-solvent surface tension isg so that the free energy of
the chain in a rodlike configuration is 4aLg. It is useful
sometimes to describe the chain in terms of two alternative
parameters: the persistence lengthP=e /kT and a dimension-
less measure of the surface tensiong, such thatg=gkT/a2.
In general we expectg will be somewhat larger than unity.

The rest of the paper is structured as follows: In Sec. II
we consider the morphologies formed by single chains as a
function of increasing chain lengthsor conversely decreasing
persistence lengthd. Section III then involves many chained
systems, and we consider and compare the free energies of
the thickened toroid and a dense sphere. Finally in Sec. IV
we summarize our results and give some future applications
of our work.
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II. SINGLE-CHAIN SYSTEMS

For short chains a rod will be the favored configuration.
However, for longer chains it is clear that the chain can re-
duce its energy by looping in on itself to form a circle of
radius R f16g. This reduces the surface energy, since two
sides of the chain can be adjacent to each other rather than
solvent, but at the cost of some bending energy. The free
energy difference between this prototoroid and the unbent
rod is

DF =
1

2
eLR−2 − 2agsL − 2pRd. s1d

This is minimized forR3=V4/3/ s4paad. Here we have
used the characteristic parametera;a2V1/3g /e first intro-
duced by Ubbink and Odijkf15g. It turns out thata controls
the phase behavior of the system. The critical value ofa
where the system jumps from a rod to a prototoroid is when
DF=0 or

atc =
27

4
p2 a5

V5/3. s2d

This gives us where the rod becomes unstable to toroid
formation. Most toroids consist of many turns, and we need
to calculate the energy of this system. We adopt the assump-
tion of Ubbink and Odijk: that the toroid is best described as
a constant density melt. This should be contrasted with the
opposite limit of a “low-density” toroid, where a virial ex-
pansion in the polymer density is appropriatef12,17g. The
simplest model is that of a toroid with major radiusR and
with circular cross section with minor radiusr. The circular
cross section is only an approximation, but one which is
sufficient for a first calculation. Using two theorems of Pap-
pus, the surface energy and volume of this system are
Fsur f=4p2gRr andV=2p2Rr2. To calculate the bending en-
ergy we use a polar coordinate system,sr ,ud located at the
centroid of the cross sectionsFig. 1d. A chain passing
through this point is at a distanceR+r cosu from the axis of
the toroid. The volume of chain located between in an ele-
mentdrdu is dV=2psR+r cosudrdrdu. The total length of
chain crossing this element isdL=dV/a2, and the energy of
this segment isdF=1/2esR+r cosud−2dL. Integrating this in
the region 0,u,2p and 0,r, r, we find a bending en-

ergy 2p2ea−2fR−sR2−r2d1/2g for the whole toroid. Eliminat-
ing the minor radius by the volume constraint and introduc-
ing a dimensionless radiusR;R/V1/3, we can write the
dimensionless free energy asFtor=Fa2e−1V−1/3, or

2p2SR −ÎR2 −
1

2p2R−1D + 2Î2paÎR. s3d

We can then minimize this over the major radius to obtain
the free energy as a function only ofa, Fsad. To lowest
order ina we find the minimum lies atR<s2p2a2d−1/5 and
the free energy is

F =
5

2
s2p2d2/5a4/5 +

1

8
a2, a ! 1. s4d

Provideda,1 we can drop thea2 term to an accuracy of
about 1%.

This free energy is useful because it can be compared
with that of other morphologies. It is natural to ask what
other morphologies are likely. As more and more chain is
placed in a toroid the toroid becomes “fatter”—the minor
radius approaches the major radius. Furthermore, the major
radius scales asL1/3 as it would for a sphere. Essentially the
toroid is attempting to become a sphere, but cannot since we
have imposed a toroidal morphology. We previously rejected
a spherical globule because of the presence of tight bends.
However, these can be avoided by adopting the model of a
hollow sphere, with inner radiusR0 and outer radiusR1. We
assume the chain wraps around the center of the sphere. The
free energy in this case is simple to calculate. Between radii
r and r +dr there is a volume of chain 4pr2dr and hence a
length of chaindL=4pr2dr /a2. The bending energy of this
portion is then 1/2dL/ r2=2pea−2dr. The total bending en-
ergy is then the integral of this:

Fbend= 2pea−2sRl − R0d. s5d

What is important and perhaps surprising about this result is
that asR0→0 the free energy approaches a finite value.
Thus, even though near the center of a sphere the bend is
very tight, the portion of chain undergoing that bend is very
small; hence, the free energy becomes finite due to a cancel-
lation of two terms in r2. The surface energy isFsur f

=4pgsR1
2+R0

2d. There is again a volume constraint which
relates the inner and outer radii,V= 4

3psR1
3−R0

3d. The dimen-
sionless free energy is then

Fsphere= 2pfb−1/3s1 + br0
3d1/3 − r0g

+ 4pafb−2/3s1 + br0
3d2/3 + r0

2g, s6d

where b;4p /3 and r0 is a dimensionless radius,r0
;R0/V1/3. For smalla!1 we find

r0 <
1

2p1/4a1/4S1 −
3

4

a3/4

p1/4D s7d

and the free energy is

F < 4ÎpÎa +
11

6
a2. s8d

FIG. 1. A diagram of the parameters used in the toroidal calcu-
lations.R is the major radius,r is the minor radius, andr, u are the
variables for integration over the cross section.
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We can now determine if this free energy is lower than
that of the toroidal morphology and where this occurs. In
fact, for large enougha slong enough chainsd, the hollow
sphere has lower free energy than the toroid. Using only the
lowest-order expansion ina in both cases gives a critical
value of ac= 256

625 102/3/p<0.6. A more accurate valuessee
Fig. 2 which plots the free energy of both morphologies ver-
susad can be obtained numerically, this givesac<0.8423. It
is interesting to know what the toroid and sphere look like
near the transition pointsFig. 3d. At this point we find a ratio
of the minor radius to the major radius of the toroid of 0.455.
The toroid is thus still fairly thin. At the transition the dimen-
sionless inner radius of the sphere isr0<0.201 and the ratio
of the outer to the inner radius isr1/ r0=3.04. The ratio of the
inner volume to the total volume is about 3%. This means
that the sphere has thick walls with a small inner chamber.
As more polymer is added the walls get thicker and the inner
radius shrinks. Very good approximationssaccurate to less

than 1% for a.acd are r1/ r0=1+s48/pd1/3a and r0

=f3/s4pdg1/3hf1+s48/pd1/3ag3−1j−1/3. One interesting point
concerns the behavior of the inner radius asa is made larger,
which corresponds to increasing the chain length. We find
r0→1/4a−1, which in dimensional units is R0
→1/4ea−2g−1=1/4sP/gd. The hole radius will thus typically
be 50 Å—i.e., somewhat bigger than a molecular size. This
result is independent of the chain length and means that for
long chains the inner radius shrinks to a constant limit, but
never shrinks to zero. Thus, as the chain gets longer the inner
hole has a roughly constant volume and the outer shell
grows. It is perhaps interesting to compare the hollow sphere
morphology with the globules found in flexible chain sys-
tems. In the latter, the inner region is actually the most dense
region of the globule, whereas in our morphology exactly the
opposite is true. We are now in a position to discuss in detail
some of the reasons why all toroids are roughly the same
size. The first of these is the formula for the toroidal radius.
In dimensional units, provideda is less than unity this isR
<sa2P2L /2p2g2d1/5. From this formula we see one simple
and clear reason why all toroids are of similar size—the de-
pendence of the toroidal radius on the parameters is very
weak. In particular, it depends only on the 1/5 power of the
chain length. Moreover, it depends only very weakly on the
surface tension and persistence length, which in any case
cannot vary very much. The second reason for same-size
behavior should also be fairly clear. One might think that by
putting enough material into a toroid—i.e., by increasingL
sufficiently—the toroid could be made large. However, in-
creasingL means increasinga, and we have shown that be-
yond a very low value ofa<0.8 the hollow sphere is the
preferred configuration. We can in fact be more quantitative
than this. Suppose we take a series of chains with a given
persistence lengthP and surface tensiong=gkT/a2. We then
vary the length of the chain. Let us call the radius of the the
smallest prototoroid that can formRsmall, and the radius of
the largest toroid that can form before a sphere takes over,
Rbig. It is then straightforward to show that

Rsmall

Rbig
=

Î3

2

s2p2d1/5

ac
3/5 S P

ga
D−1/2

= 1.74S P

ga
D−1/2

. s9d

Typical values of the persistence length and surface tension
areP/a=30 andg=3. This givesRsmall/Rbig<0.55. The de-
pendence of this answer onP andg is weak, so that a value
of 0.5 will be typical. This implies that the range of toroidal
radii will typically be of order 2, thus showing explicitly how
the small range found experimentally might be obtained. An-
other quantity of interest experimentally is the ratio of the
minor and major radii of the toroids. This increases as the
chain length, ora, increases. It reaches a maximum value of
0.455 ata=ac. Experimentally, there seem to be no toroids
with a ratio greater than this. In the above calculation we
have used a simple model for the toroidal geometry and free
energy. Several objections could be raised against this model.
We raise some of these here and then refine our calculation
to take them into account. The first is that, as shown by
Ubbink and Odijkf15g, the cross-sectional shape is not nec-
essarily circular. In fact asa becomes large the shape can

FIG. 2. The free energy vsa for the toroid and hollow sphere.
The solid line is the free energy of the toroid and the dashed that of
the hollow sphere. The critical value ofa<0.8423 occurs where
the two free energies intersect.

FIG. 3. The radii verses length for the toroid and hollow sphere.
The solid line and the dotted lines are the major and minor radii of
the toroid. The dashed and dot-dashed lines are the outer and inner
radii of the hollow sphere.P/a=30 andg=3 for this graph but
these values only affect the scaling of the graph and not the actual
shape. The minimum length value corresponds to the change from a
straight rod to a prototorus. Note the major radius of the toroid and
the outer radius of the hollow sphere appear to be nearly equal at
the phase boundary. This is a universal result, but appears to be a
coincidence.
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distort so it is flattened in the center. This only becomes
significant for large values ofa of order 3, and our transition
occurs fora<0.8. Nevertheless, it is something that should
be accounted for, if only as a precaution. Second, it is rather
clear that one advantage the sphere has over the simple tor-
oid is that in a sphere the winding is around a pointsthe
centerd whereas in the toroid the winding is assumed to be
about a central axis. This, however, need not be the case. In
fact chains could wind about the central point of the toroid
and hence reduce their bending energy. In the following we
account for both these effects. To account for the distortion
in shape of the toroid we again use a plane polar coordinate
system, but with the dimensionless radiusr being a function
of u. We letRc be the distance of the centroid of our shape
from the toroidal center. We use the same dimensionless en-
ergies and lengths as above. The bending free energy is then

Fbend= pE
0

2p

duE
0

rsud

drrsRc
2 + r2 + 2Rcr cosud−1/2.

s10d

The integral overr can be done explicitly leaving only a
functional ofrsud.

The surface energy can be obtained using the theorem of
Pappus:

Fsur f = 2paRcE
0

2p

duÎr2 + sdr/dud2. s11d

The major radius can be eliminated by calculating the vol-
ume using another theorem of Pappus:

1 = pRcE
0

2p

dur2sud. s12d

We need to minimizeFbend+Fsur f subject to the constraints
that the origin of thesr ,ud coordinate system lies at the cen-
troid:

E
0

2p

dufsudr3sud = 0, s13d

where fsud=sinsud and cossud.
We can now minimize our free energy as a function ofa

and obtain a modified form of the free energy for a torus.
However, this is very close to that of our previous simple
model fora,1. This means that there is negligible change
to the critical value ofa, which remains atac<0.8423.

At the critical value ofa the cross section of the toroid is
very close to being circular. This means that the distorted
cross sections predicted by Ubbink and Odijk for largea
toroids will never exist in equilibrium, since for these large
values ofa we find a hollow sphere is more stable. However,
our work does not entirely rule out such distorted toroids, as
they might exist as a local equilibrium morphology, even if
the global equilibrium is not a torus. It is important to com-
pare our work with some of the previous work relating to
toroids. In particular, Parket al. f12g have suggested that
packing defects can play an important role in determining
toroidal size for the low-density case where a virial expan-

sion in the polymer density is appropriate. It is somewhat
difficult to compare our work with theirs, since the work of
Park et al. concerns dilute toroids whereas ours work con-
cerns a “melt toroid.” Furthermore, Parket al. do not actu-
ally present any graphs of toroidal radius versusa. In a melt
we might expect that packing defects would be more impor-
tant. However, even in a melt, a lot of the space is actually
empty, so that it is fair to say that the defects suggested by
Parket al. can be avoided. Thus, the chains can avoid sharp
bends while crossing each other, because a significant
amount of empty space is provided to them. What we have
shown here is that such defects are not needed to explain the
small variation of radii in toroids.

We should also remark on some recent work by Vasi-
levskayaet al. f17g, who have suggested that spherical glob-
ules can exist, in the low-density limit. This is based on the
observation that the toroids get fatter as the amount of ma-
terial is increased, and eventually the major and minor radii
become equal. What we have shown is that this is not an
accurate way of estimating the crossover point, since in fact
a hollow sphere becomes favored when the toroid is still
very thin. In Fig. 5 of Vasilevskayaet al. f17g evidence is
provided for a “quasi-spherical” geometry for the T4-DNA
molecule. However, whether the structure has a hole in the
middle is impossible to determine. It must be also noted that
both Monte Carlo and Brownian dynamic simulations do ob-
serve a transition from a planar, toroidal structure to a spheri-
cal globule structure on increased chain length, at fixed
bending constantf10,19,20g. However, it is not clear from
the simulations that a hole forms at the center of the spheri-
cal structure. Indeed, given that we have shown above that
this hole is quite small, it could be quite difficult to clearly
identify its presence from coarse-grained simulations.

In this article we do not consider twist energy. Indeed, we
assume our polymers have a negligible twist constant. For
some double-stranded biopolymers this may not be a valid
assumptionf21g. In this case we anticipate the twist energy
would have a much greater effect on the spherical globule
than on thesplanarliked toroidal geometry.sIn the toroidal
geometry for most of the chain length the chain can be con-
sidered in one planar layer.d Thus we would expect the tran-
sition from toroidal to hollow sphere would occur at a larger
a value.

III. MANY-CHAIN SYSTEMS AND DIFFERENT
MORPHOLOGIES

We now consider the scenario where we have many
chains in our system. The first morphology we consider, as
for a single chained system, is a thickened toroid. The free
energy for many chains is calculated as before, except we
have the volume constraint that the volume of the toroid is
NLa2, whereN is the number of chains in the system. The
free energy of the thickened toroidal condensate may then be
easily evaluated as a function ofN.

The next possible configuration of the semiflexible poly-
mer condensate we consider is a spherical globule. To deter-
mine the free energy for this configuration is a complicated
task, not least because it is not straightforward as to how the
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stiff tubes will pack into a sphere. For the single-chained
system we neglected any packing problems for the spherical
geometry. Here, we must address this question because it is
apparent the spherical geometry will not have have a hollow
center. For example, close to the center of the sphere, be-
cause there are many chains present, the chains could pack
radially and so be effectively rigid. This would only occur
close to the center of the sphere, further out the chains would
begin to wrap into the spherical geometry. Thus the problem
of largespossibly infinited bending at the center of the sphere
is avoided. To be able to calculate the free energy for a
spherical geometry we shall adopt a simplified packing struc-
ture which is not necessarily the optimal packing structure
for the tubes. In fact, it most likely is not; however, our
structure will give an estimate of the free energy for a spheri-
cal globule. This estimate will be useful in decidingsap-
proximatelyd when such a structure will become a stable
state.

We assume the globule is made up of a series of discs.
Within each disk the chains initially pack radially and then at
some radiusR0 they bend and pack in concentric circles; see
Fig. 4sad. We need to initially determine the trajectory of a
“typical” chain, which in turn will allow us to determine its
bending energy. First we determine the number of chains
which will fully pack a circular disk to radiusR0. To do this
we use a similar method to one given by Williams and Fre-
dricksonf22g for the packing of rods in a sphere. We divide
two-dimensionals2Dd space into circular shells of thickness
l and divide thej th shell at radiusjl into nj shells of volume
la2 so thatnj =2p jsl /ad. If we let mj be the number of tubes
beginning in thej th layer, then the number of available sites
for starting tubes in layeri is n̄i and given byn̄i =2pisl /ad
−o j=1

i−1mj. In the continuum limit where the radius of the
sphere,R0, is much larger thanl, we havei =R0/ l and the
number of rods starting betweenR0 and R0+dR0 is
msR0ddR0. Assuming thatR0,L, which is most likely for
long chains, then the number of available sites for new
chains at theith layer is n̄i −2psR0/ad−e0

R0/amsrddsr /ad.
Now in the continuum limit one can shown̄i =amsR0d so that
we get the following first-order differential equation for
msR0d:

dmsR0d
dR0

=
2p

a
−

msR0d
a

. s14d

The solution is straightforward and ismsR0d=2pf1
−exps−R0/adg. Thus the total number of tubes that pack a
circular disk up to radiusR0 is NsR0d and is NsR0d=omj

=e0
R0/amsrddsr /ad. On completing the integral we find

NsR0d=2psR0/adf1−sa/R0d+sa/R0dexps−R0/adg. Now the
radius of the disk,R0, would be expected to be much larger
than a scertainly for many chains, where we would expect
the spheres to become stabled so thata/R0!1 and to leading
order NsR0d=2psR0/ad. Essentially, the number of chains
emerging from the circular disk is equal to the perimeter area
of the disk divided by the cross-sectional area of the tubes.

If the tubes pack radiallysinitially d to some radiusR0 and
if all these chains formed a disk of thicknessa units, the total
radius Rout of the disk is given bypRout

2 a=NLa2, so that

Rout=s2LR0d1/2. Note that if l is the length a chain expends,
on average, to get to the cylindrical surface of radiusR0 then
pR0

2a=Nla2, which givesl =R0/2. At r =R0 the tubes emerge
at right angles to the tangent to the circle.fAs a simplifica-
tion one may understand this in the following way: Consider
a cylinder of radiusR0 and heighta and to this cylinder are
graftedNsR0d semiflexible chains. One now asks, what is the
bending energy associated with this semiflexible polymer
brush, as they wrap round the surface of the cylinder?g At
this point they begin to bend away from their radial trajec-
tory into concentric circlessor spiralsd. At each incremental
lengthdr, the number of chains that cross the radiusR0+dr
must be stillN. However, the extra length available to the
chains must be taken up with the decreased tilt anglesto the
radial tangentd. The tilt angle initially isp /2 and this de-
creases as we begin to wind. The length each chain takes up
on the circle at radiusR0+dr is a/sinf wheref is the tilt
angle. As r →` we see the tilt anglef goes to zerosas
expectedd. So at any radiusR0+dr we have the equality
Na/sinf=2psR0+drd and substituting forN we find at any
radiusr, r =R0/sinf. Now we requiref, the tilt angle at any

FIG. 4. sad Schematic of a typical disc of semi-flexible chains.
sNote the figure should be viewed as if all chains and disk are in the
same plane. Not all chains in disk are drawn.d The chains pack the
disc up to radiusR0 and then begin to wrap around each other in the
same disk.sbd A schematic of the pseudospherical globule. The
ends are chopped off so that the final diskstop and bottomd hasa0

chains and corresponding radiusRm. The radius of the sphere isR.
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radius, in terms ofr and u, the polar angle. Ifn̂ is a unit
vector along the chain trajectory andm̂ is a unit vector along
the tangent to the circle of radiusr, then cosf= n̂ ·m̂. In
polar coordinates the unit tangent vector to the circle isêu

and a unit vector along the chain isŝ=sdrêr +rduêud / fr2

+ru
2g1/2. Thus cosf=rsud / fr2+ru

2g1/2 and so sinf=ru / fr2

+ru
2g1/2. For simplicity we denotedr /du; ru. sAlternatively,

we know tanc=rdu /dr where c is the angle between the
tangent to the curve and the radial vector. Soc=p /2−f.
From this one can show, once again, sinf=ru / fr2+ru

2g1/2.d
The desired relationship between tilt angle and polar angle
thus yields the ordinary differential equationr =R0sr2

+ru
2d1/2/ ru. This equation may be solved analytically with the

solution

u = u0 + HFS r

R0
D2

− 1G1/2

− arctanFS r

R0
D2

− 1G1/2J ,

s15d

whereu0 is the initial polar angle of a particular chain. Each
chain in the disksof initial radiusR0d has the same trajectory,
given by Eq.s15d. Note that for larger sr @R0d the trajectory
becomesu−u0+p /2=r /R0 or r =R0Du, whereDu is thesef-
fectived polar angle. Given thatR0=Na/ s2pd we see that an
increase in polar angle of 2p corresponds to the trajectory
increasing by a radius ofNa, as expected for wrapping of
chains. Furthermore, the arc length of such a chain is given
by s=eR0

Routdrf1+srurd2g1/2. This integral may be easily com-
pleted with Eq.s15d to yield s=L−R0/2, which is as ex-
pected.

Now we require the bending energy which is given by

Fbend

kBT
=

P

2
E

R0/2

L

c2ssdds=
P

2
E

rinnsR0d

routsLd

c2srdf1 + srurd2g1/2dr.

s16d

Here s is the arc length along the polymer chain. We need
csrd for the bending energy which is calculated ascsrd
=sr2ur

3+2ur +rurrd / s1+r2ur
2d3/2. In fact this turns out to be

relatively simple for our trajectory s15d—i.e., c
=R0

−1fsr /R0d2−1g−1/2 which we may use to calculate the
bending energy. Thus the bending energy integral becomes

Fbend

kBT
=

P

4R0
E

1

router r

r2 − 1
dr, s17d

where router=2spL /ad1/2/N1/2. The integral may be readily
completed and involves the natural logarithm of the denomi-
nator. When this is evaluated at the bottom terminal, it yields
a weakslogarithmicd divergence. Physically, the reason for
this divergence is the following. Our packing constraint is
initially si.e., at r =R0d too strong and forces the chain to
bend too sharply. In reality, there is no need to force such a
strict restriction on the chains, as there is sufficient free vol-
ume present for the chains to overcome such a sharp bend.
Mathematically, to overcome the weak divergence we shall
calculate the bending energy from one monomer away from
the initial point r =R0. Thus rather than having a lower ter-

minal of 1 in Eq. s17d we have a lower terminal ofsR0

+ad /R0=1+sa/R0d.
The globule is made up of stacks of disks and in each disk

layer the chains wind as discussed above. Initially we shall
consider the globule to be made up of disks but in each layer
there is one less chain. This results in a globule shape which
has the approximate shape of a cone of stacked diskssthe
cone is not smooth but has a steplike boundary shaped. One
extra problem is that we cannot let the number of chains at
either of the ends go to 1, because if it did, the continuum
approximation breaks down. In addition, this could lead to an
infinite curvature and hence divergent free energy. Hence, we
impose a lower cutoff ofa0 chains in each of the end layers.
We can calculate the surface energy quite readily for such a
geometry and the bending energy using the calculation
above. The free energy for this geometry, however, is not less
than the energy of a thick toroid for anyN. It is apparent
from this calculation that the major contribution to the glob-
ules free energy is its surface energy. For the cone of stacked
disks shape the major reason the free energy is large is that,
because each layer has one less chain, the additional surface
area increases in discrete jumps. It is now clear if we are to
obtain a spherical shaped globule we need to let chains fill
the gaps between layers—i.e., smooth out the steplike in-
creases.

To do this we implement the following model. The glob-
ule hasN chains in total. If it were to form a perfectly
spherical shape, then the radius of the globule,R, would be
related to the number of chains via 4pR3/3=NLa2. How-
ever, we shall still consider our globule to be made up of disk
of chains. In the continuum limit, where our model is valid,
we have a lower cutoff on the number of chains in the end
layers. This cutoff isa0 chains.sWe can varya0, but we shall
see the results are independent of this artifact.d Thus the
minimum radius of a layersi.e., layers at top and bottom
extremitiesd, Rm, is given bypRm

2 a=a0La2. The globule thus
is a sphere but its ends are chopped off; see Fig. 4sbd. Thus
the volume of the globule is 4pR3f1−sRm/Rd2g1/2f1
+sR/Rmd2/2g /3, and since the globule is assumed to be in-
compressible and contains no solvent, we have a relationship
which may be used to determineR:

NLa2 =
4

3
pR3f1 − sRm/Rd2g1/2f1 + sR/Rmd2/2g. s18d

In the limit of Rm!R, which we believe is the case for many
chains, the square root in the above equation can be ex-
panded to the second term. The resultant equation turns out
to be a quartic equation forR which, fortunately, has only
one physically correct root which is given by

R=
u1

1/2

2 H1 +F2S1 +
Rm

4

u1
2 D1/2

− 1G1/2J , s19d

where u1=v1+v2, v1=sq+D1/2d1/3, v2=sq−D1/2d1/3, q
=9V2/ s32p2d, D=Rm

12/27+s3V/4pd4/4, andV=NLa2. Now
that we have the radius we can calculate the surface energy
of the globule, which is the surface tension times the surface
area. ThusFsur f=2pR2gh2f1−sRm/Rd2g1/2+sRm/Rd2j. Con-
sider now a layer which isia swhere i =1,2,3, . . .d units
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above the middle layer. Its radius would then beRsid=fR2

−siad2g1/2. The maximum number of chains that could reside
in this layerswithout carrying outside the boundary,Rsid,d is
given by the integerNsid betweenpsR2sid /La2d−1,Nsid
,psR2sid /La2d. The additional space that at the moment re-
mains void in each layer is thereforepR2sida−pr2sida where
pr2sida=NsidLa2. This volume may be filled up with addi-
tional chains which wrap around in spiralssand whose bend-
ing energy is easily evaluatedd. However, to exactly fill each
layer out to the required radius—i.e.,Rsid—these additional
chains must traverse into adjacent layers. To do this the per-
fect packing arrangement of the stacked cone geometry is not
maintained close to the surface of the sphere. We neglect the
small inaccuracy which this involves; e.g., the free volume is
not accounted for correctly and there may be an additional
bending and twisting energy involved in chains traversing
from layer to layer. We can now calculate the total free en-

ergy of a globule numerically, for incremental total number
of chains.

The results of our calculation are shown in Fig. 5, where
we plot dimensionless free energyF;Fa2e−1V−1/3 versus
N—the number of chains in the globule. We use values ofL,
a, g, andP such thata=10−4/3<0.046 so that a single chain
would form a toroid, according to Sec. II.sFor this semiflex-
ible chain the region of stability for toroids is 3310−7øa
ø0.8423.d In Fig. 5sad we show the free energy up to 106

chains and it is clear that the spherical globule energy is
much less than the thickened toroidal free energy, indicating
stability for the sphere. The actual crossover from a thick-
ened toroid to sphere happens to occur at much lowerN.
Figure 5sbd shows the free energy at lowerN. Here we show
results for two different values ofa0. sRecall thata0 is the
number of chains in the end layers and is an artifact which
we introduced to simplify our model.d We see for both values
of a0 that there exists a crossover from toroid to sphere, the

FIG. 5. Dimensionless free energyF of a spherical globulesdashed line—a0=10, dot-dashed line—a0=30d and thick toroidssolid lined
versus number of chains,N. sad Up to 106 chainssthe x axis is in units of 105 chainsd. sbd For fewer chains showing the crossover from
toroids to spheres.
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larger thea0 the larger the crossover, as one would expect. In
fact for a0=10 the crossover is at approximatelyN=1500
and for a0=30 the crossover is at roughlyN=9500. Both
these values are large enough, not to violate our continuum
approach. Note that for largeN, these two curves merge
together, indicating that the effect of introducing the artifact
a0 becomes negligible as the number of chains in the system
becomes large. Hence our results are qualitatively indepen-
dent of the value ofa0. Our calculations have shown that at
low chain concentration a toroidal geometry should be stable
while at sufficiently high chain concentrations the spherical
geometry should be stable. A first-order phase transition
sfrom toroids to spheresd is predicted at the critical chain
concentration where the crossover occurs. Recently Conwell
et al. f23g have prepared toroidal DNA condensates from salt
solutions. The toroidal DNA condensate has a mean toroid
diameter, 2R, of 55 nm and a mean toroidalscross-sectionald
thickness, 2r, of 25 nm. From this they estimate the conden-
sate has 6–32 DNA chains. It is hard to compare our theory
with Conwell et al. since we do not know their effectivea
value. However, an estimate of around 1000 chains for the
transition, from our theory, does not seem unreasonably
large, given that this is an upper estimate.

Finally, we emphasize that our calculations only give up-
per estimates of the free energy for the spherical globule.
Since we have implemented a model where the chains essen-
tially wrap in parallel disks, we have had to introduce the
simplification that the sphere has its ends chopped offsi.e.,
the minimum chains in end layers isa0d. Of course real
spherical globules will not have such constraints and thus
their energies will be smallersper chaind compared to our
energies. It is also most probable that there will be a better
packing arrangement, in general, than what we have used
which would lead to a lower free energy. In fact, very re-
cently Kulic et al. f24g have analyzed a novel packing ar-
rangement of the tubes in a toroidal condensate. In their
model f24g they consider the tubes to run at some angle to
the main toroidal plane. They find such a packing arrange-
ment may be the real arrangement for thicker toroids. Indeed,
it is possible such an arrangement might also be useful for
the dense spherical globule. Our spherical energy is therefore
just an upper estimate of a real spherical globule’s free en-
ergy. From this estimate we can conclude that at sufficiently
high chain numberssor concentrationsd the condensed glob-
ule will be spherical rather than a toroid. The crossover num-
ber of chains we have predicted from our models are just

rough estimates. In reality we would expect much lower
crossovers than predicted heressince our spherical globule
energies are upper boundsd. We hope this work will stimulate
further more accurate numerical models and experiments on
many chained systems to observe such a crossover.

IV. SUMMARY

In this article we have considered the possible morpholo-
gies formed fromsstiffd semiflexible polymers when they are
put in a poor solventsor with a condensing agentd. We have
initially studied the the effect of persistence length versus
overall length of a single polymer chain. We have shown
above a critical value of the dimensionless parametera
;a2V1/3ge a single semiflexible chain will form a hollow
sphere. This value isac<0.84. Thus on increasinga we find
initially rods, then toroids and finally spheres. We have also
considered the case of many semiflexible chains in a poor
solvent. An individual chain will form a toroid, but the ques-
tion is whether many such chains will also form a toroid? We
have shown there exists a critical number of chainssor con-
centrationd above which the chains will form a densely
packed sphere. Below this concentration the chains will con-
dense to a thickened toroid,

There are obvious applications of the hollow sphere mor-
phology discussed here. These are all applications in which
surfactant vesicles are currently involved, most notably in
the cosmetic and “controlled-release” drug industries. The
semiflexible polymer system has certain differences with sur-
factant vesicles which might be useful. Most notably, the
walls are thick, thus leading to slower release, and can be of
controlled thickness, by adjusting the chain length. In prac-
tice some precautions would need to be taken to ensure that
the chains did not decondense. This could be done for in-
stance by crosslinking after condensation.

To conclude this article we turn from hard calculation to
an observation. In all the forms of life with which the authors
are familiar the genetic materialsDNA or RNAd is encapsu-
lated in some shell of lipids or proteins. Our hollow sphere
configuration allows for a novel form of encapsulation where
the genetic material itself is the shell.
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