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Semiflexible polymer condensates in poor solvents: Toroid versus spherical geometries
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Semiflexible polymers, such as DNA, in the presence of a condensing agent often form toroids. This is due
to a balance between bending and surface area free energy penalties. Here we show why in experiments all the
toroids have been found to have similar physical size. We also introduce a novel morphology, that of the
hollow sphere, which is favored for long polymer chains. This offers the possibility of encapsulating material
inside a “vesicle” made of semiflexible polymers. We also consider the case of many such polymer chains
placed in a poor solvent. We show a transition between two morphologies occur on increasing concentration of
polymer chains, from a thickened toroid to a spherical globule.
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I. INTRODUCTION radius on chain length explains why toroids all have approxi-

Perhaps the most important and fundamental problem iff'ately the same size. The new “hollow sphere” morphology

polymer science is the conformation of a polymer chain un-S of course of interest in itself. It suggests that vesicles could

der different solvent conditions. For “fully flexible” chains, P& made of semiflexible chains. Vesicles are already impor-
which suffer negligible free energy penalty upon bending 2Nt in problems of drug delivery, and this novel form of
the solution to this problem has long been knofi. In vesicle might have interesting practical properties—for in-
good solvents the chain is a swollen random coil, whereas i§tance. the wall thickness can be readily controlled by chang-
poor solvents where the monomer-monomer interactions arlgg’;heﬂI]ength g‘; the p]zc_)l);mer.t is th f i f
attfacti_ve the chain forms a fairly uniform spherical gIObU|e'stiff Sglyn?lreftr:?wai?l rg uonollgretrheese?ect%fgrégr:?;ngzgoag;g%?)ér
This kind of behavior is seen in wide range of common;, 5 poor solvent. Given that one polymer chain will form a

fynth_(faluc.bplo!%/r_nerst.hHoyvever, m%”i’ ptqul/rpers are n faCttoroidaI morphology the obvious question to ask what mor-
semitiexibie,” I.€., they Incur a substantial Iree energy pen'phology will many chains form? Will it still be a toroid,

alty when bent. These include several synthetic polymers angi,eit thickened up, or can another morphology be stable. On
almpst all b|opolymer§, such as DNA and actin. The confor, face energy grounds, it is clear a spherical geometry
mations of these chains are much less well understood thagoyid be a better geometry. We therefore develop a model of
their more flexible cousins. Indeed, one of the most remarky spherical globulgwithout any holes in the centeand
able properties of DNA is the formation of toroids under compare its free energy with that of a toroid. We show there
poor solvent conditionf2—18|. This can be achieved by us- exists a crossovein number of chainsfrom a toroidal mor-
ing a single solvent or by using a “condensing agent,” whichphology to a spherical globule.
acts as a glue between the chain segments. We consider a semiflexible chain of lendttwith bending

The usual argument for why toroids form is that in a constante, such that when the chain is bent with radius of
toroid the chain suffers less bending energy than in a sphereurvatureR a bending penalty of 1/2 R 2 is incurred. We
where presumably very tight bends must take place. The sizassume, as a concrete example, that the chain cross section is
of the toroid is then given as a balance between the bending square of side, so that the total volume of the chain is
energy, which favors a weak bend and hence large toroids/=La? The chain is immersed in a poor solvent and the
and the surface energy, which favors a toroid as compact ashain-solvent surface tension jsso that the free energy of
possible[15]. At least two major problems remain for single the chain in a rodlike configuration isally. It is useful
stiff chains. The first is that the size of all the toroids foundsometimes to describe the chain in terms of two alternative
experimentally is almost the same and varies very weaklyparameters: the persistence lenBthe/kT and a dimension-
with the length of chain involved. The second is that it is notless measure of the surface tensgrsuch thaty=gkT/a?.
clear that a toroid is the lowest-energy configuration. In thisin general we exped will be somewhat larger than unity.
paper we show that these two problems are related. In fact The rest of the paper is structured as follows: In Sec. Il
we show that for long enough chains a toroid is not the bestve consider the morphologies formed by single chains as a
configuration and that a hollow sphere is of lower free enfunction of increasing chain lengtor conversely decreasing
ergy. This fact means that the range of chain length ovepersistence lengihSection Ill then involves many chained
which toroids are stable is fairly small. For small chain systems, and we consider and compare the free energies of
lengths a “straight line” is the best configuration, while for the thickened toroid and a dense sphere. Finally in Sec. IV
longer lengths the hollow sphere is preferable. This factwe summarize our results and give some future applications
combined with the very weak'/® dependence of the toroidal of our work.
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ergy 2mea JR-(R?-r?)Y?] for the whole toroid. Eliminat-
ing the minor radius by the volume constraint and introduc-
ing a dimensionless radiuR =R/VY3, we can write the
dimensionless free energy &,,=Fa’e V3 or

2772(73 - \|R?- %Rﬂ) +2\27maR. 3)

We can then minimize this over the major radius to obtain
the free energy as a function only of F(a). To lowest
order ina we find the minimum lies aR = (272a?)~Y5 and
the free energy is

FIG. 1. A diagram of the parameters used in the toroidal calcu-
lations.R is the major radius; is the minor radius, angd, 6 are the F= 5(2772)2/5a4/5+ }a2’ a<l. (4)
variables for integration over the cross section. 2 8

Provideda<1 we can drop they? term to an accuracy of
Il. SINGLE-CHAIN SYSTEMS about 1%.

For short chains a rod will be the favored configuration. This free energy is useful because it can be compared
However, for longer chains it is clear that the chain can rewith that of other morphologies. It is natural to ask what
duce its energy by looping in on itself to form a circle of other morphologies are likely. As more and more chain is
radius R [16]. This reduces the surface energy, since twoplaced in a toroid the toroid becomes “fatter’—the minor
sides of the chain can be adjacent to each other rather thaadius approaches the major radius. Furthermore, the major
solvent, but at the cost of some bending energy. The fregadius scales as'® as it would for a sphere. Essentially the
energy difference between this prototoroid and the unberforoid is attempting to become a sphere, but cannot since we
rod is have imposed a toroidal morphology. We previously rejected

1 a spherical globule because of the presence of tight bends.

AF=ZeLR2-2ay(L - 27R). (1)  However, these can be avoided by adopting the model of a

2 hollow sphere, with inner radiu], and outer radiug;. We
assume the chain wraps around the center of the sphere. The
free energy in this case is simple to calculate. Between radii
r andr+dr there is a volume of chain#?dr and hence a
length of chaindL=47r?dr/a?. The bending energy of this
[portion is then 1/8L/r?=2mea ?dr. The total bending en-
ergy is then the integral of this:

27 . a Foend= 2mea (R = Ry). (5
= — . (2)
4 V5/3

This is minimized forR®=V*3/(47aa). Here we have
used the characteristic parameter a?V¥3y/ e first intro-
duced by Ubbink and Odijk15]. It turns out thato controls
the phase behavior of the system. The critical valuexof
where the system jumps from a rod to a prototoroid is whe
AF=0 or

o7
© What is important and perhaps surprising about this result is

This gives us where the rod becomes unstable to toroi at asRy—0 the free energy approaches a finite value.

, ) ) hus, even though near the center of a sphere the bend is
formation. Most toroids consist of many turns, and we need . : . . .
: very tight, the portion of chain undergoing that bend is very
to caIcuIatg the energy of this system. We adopt the assUMB a1l hence, the free energy becomes finite due to a cancel-
tion of Ubbink and Odijk: that the toroid is best described 8Stion of two terms inr2 The surface energy i€, ¢

a cons_tan_t d_en3|ty “melt. Thls_ spould_ be contraste_d_ with th%4wy(R§+R§). There is again a volume constraint which
opposite limit of a “low-density” toroid, where a virial ex-

. . _A_], _ .
pansion in the polymer density is approprigte,17. The 'elates the inner and outer radil=3(R{~Rj). The dimen-
simplest model is that of a toroid with major radiBsand ~ Sionless free energy is then

with circular cross section with minor radius The circular - -1/3 3\1/3
C L A F =2 1+pr -r
cross section is only an approximation, but one which is sphere™ 2181 + o) ol
sufficient for a first calculation. Using two theorems of Pap- +4aa 21+ Bri)?R + 13, (6)

pus, the surface energy and volume of this system are ) ) ) )
Fo =4m2yRr andV=277Rr2 To calculate the bending en- Where {,33547’/3 and ro is @ dimensionless radius,
ergy we use a polar coordinate system,6) located at the = Ro/V™" For smalla<1 we find
centroid of the cross sectiofFig. 1). A chain passing 1 3 a3
through this point is at a distané®+ p cosé from the axis of o= m( - ZT‘)
the toroid. The volume of chain located between in an ele- T ™
mentdpdé is dV=2m(R+p cosf)pdpdd. The total length of and the free energy is

chain crossing this element i#.=dV/a?, and the energy of
this segment isiF=1/2¢(R+p cos#)dL. Integrating this in
the region G<#<27 and O<p<r, we find a bending en-

()

~ 11
F~a/mla+ i ®)
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FIG. 2. The free energy va for the toroid and hollow sphere.
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than 1% for a>a,) are ry/ro=1+(48/mY3a and r,
=[3/(4m) M3{[1+(48/m) 3a]®- 1}Y3. One interesting point
concerns the behavior of the inner radiusxds made larger,
which corresponds to increasing the chain length. We find
ro—1/4a™', which in dimensional units is R,
—1/4ea ?y1=1/4(P/g). The hole radius will thus typically

be 50 A—i.e., somewhat bigger than a molecular size. This
result is independent of the chain length and means that for
long chains the inner radius shrinks to a constant limit, but
never shrinks to zero. Thus, as the chain gets longer the inner
hole has a roughly constant volume and the outer shell
grows. It is perhaps interesting to compare the hollow sphere
morphology with the globules found in flexible chain sys-
tems. In the latter, the inner region is actually the most dense

The solid line is the free energy of the toroid and the dashed that Otfegion of the globule, whereas in our morphology exactly the

the hollow sphere. The critical value of=0.8423 occurs where
the two free energies intersect.

We can now determine if this free energy is lower than
that of the toroidal morphology and where this occurs. In

fact, for large enoughy (long enough chainsthe hollow
sphere has lower free energy than the toroid. Using only th
lowest-order expansion im in both cases gives a critical
value of a,=22 107%/7~0.6. A more accurate valuesee
Fig. 2 which plots the free energy of both morphologies ver
susa) can be obtained numerically, this gives~0.8423. It

is interesting to know what the toroid and sphere look like
near the transition poiriFig. 3). At this point we find a ratio
of the minor radius to the major radius of the toroid of 0.455.
The toroid is thus still fairly thin. At the transition the dimen-
sionless inner radius of the sphere §s=0.201 and the ratio
of the outer to the inner radiusiig/ro=3.04. The ratio of the
inner volume to the total volume is about 3%. This mean
that the sphere has thick walls with a small inner chambe
As more polymer is added the walls get thicker and the inne
radius shrinks. Very good approximatiofaccurate to less
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FIG. 3. The radii verses length for the toroid and hollow sphere.

The solid line and the dotted lines are the major and minor radii of
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opposite is true. We are now in a position to discuss in detail
some of the reasons why all toroids are roughly the same
size. The first of these is the formula for the toroidal radius.
In dimensional units, provided is less than unity this iR

~ (a?P?L/2m%g?)Y>. From this formula we see one simple
and clear reason why all toroids are of similar size—the de-
Bendence of the toroidal radius on the parameters is very
weak. In particular, it depends only on the 1/5 power of the
chain length. Moreover, it depends only very weakly on the
surface tension and persistence length, which in any case
cannot vary very much. The second reason for same-size
behavior should also be fairly clear. One might think that by
putting enough material into a toroid—i.e., by increasing
sufficiently—the toroid could be made large. However, in-
creasingL means increasing, and we have shown that be-
yond a very low value oix=0.8 the hollow sphere is the
referred configuration. We can in fact be more quantitative
han this. Suppose we take a series of chains with a given
Eersistence lengtR and surface tensiop=gkT/a?. We then

ary the length of the chain. Let us call the radius of the the
smallest prototoroid that can foriRg,,, and the radius of
the largest toroid that can form before a sphere takes over,
Ryig- It is then straightforward to show that
Rsmall _ E(2ﬂ2)1/5

-1/2 P -1/2
Rog 2 a3/5< ) ﬂﬂ(@) I

C
Typical values of the persistence length and surface tension
areP/a=30 andg=3. This givesRsya Ruig=0.55. The de-
pendence of this answer ¢hand y is weak, so that a value
of 0.5 will be typical. This implies that the range of toroidal
radii will typically be of order 2, thus showing explicitly how
the small range found experimentally might be obtained. An-
other quantity of interest experimentally is the ratio of the
minor and major radii of the toroids. This increases as the
hain length, ok, increases. It reaches a maximum value of

the toroid. The dashed and dot-dashed lines are the outer and inngr455 ata=ac. Experimentally, there seem to be no toroids

radii of the hollow sphereP/a=30 andg=3 for this graph but

P
ga

with a ratio greater than this. In the above calculation we

these values only affect the scaling of the graph and not the actuf}ave used a simple model for the toroidal geometry and free
shape. The minimum length value corresponds to the change from@Nergy. Several objections could be raised against this model.
straight rod to a prototorus. Note the major radius of the toroid and/Ve raise some of these here and then refine our calculation
the outer radius of the hollow sphere appear to be nearly equal 4 take them into account. The first is that, as shown by
the phase boundary. This is a universal result, but appears to beldbbink and Odijk[15], the cross-sectional shape is not nec-
coincidence. essarily circular. In fact as becomes large the shape can
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distort so it is flattened in the center. This only becomession in the polymer density is appropriate. It is somewhat
significant for large values af of order 3, and our transition difficult to compare our work with theirs, since the work of
occurs fora=0.8. Nevertheless, it is something that shouldPark et al. concerns dilute toroids whereas ours work con-
be accounted for, if only as a precaution. Second, it is rathecerns a “melt toroid.” Furthermore, Paét al. do not actu-
clear that one advantage the sphere has over the simple taily present any graphs of toroidal radius verausn a melt
oid is that in a sphere the winding is around a pdite ~ we might expect that packing defects would be more impor-
centej whereas in the toroid the winding is assumed to betant. However, even in a melt, a lot of the space is actually
about a central axis. This, however, need not be the case. Empty, so that it is fair to say that the defects suggested by
fact chains could wind about the central point of the toroidParket al. can be avoided. Thus, the chains can avoid sharp
and hence reduce their bending energy. In the following wéends while crossing each other, because a significant
account for both these effects. To account for the distortioramount of empty space is provided to them. What we have
in shape of the toroid we again use a plane polar coordinatehown here is that such defects are not needed to explain the
system, but with the dimensionless radjubeing a function small variation of radii in toroids.
of 6. We letR. be the distance of the centroid of our shape We should also remark on some recent work by Vasi-
from the toroidal center. We use the same dimensionless eiievskayaet al.[17], who have suggested that spherical glob-
ergies and lengths as above. The bending free energy is theites can exist, in the low-density limit. This is based on the
2 o(6) ob.serya.tion that the toroids get fatter as _the amount of ma-
Foond= Wf daJ drr(R2+12+ 2R cos) 2, terial is increased, and eventually the major and minor radii
0 0 become equal. What we have shown is that this is not an
(10) accurate way of estimating the crossover point, since in fact
a hollow sphere becomes favored when the toroid is still
The integral over can be done explicitly leaving only a very thin. In Fig. 5 of Vasilevskayat al. [17] evidence is

functional of p(6). provided for a “quasi-spherical” geometry for the T4-DNA
The surface energy can be obtained using the theorem @fholecule. However, whether the structure has a hole in the
Pappus: middle is impossible to determine. It must be also noted that
o both Monte Carlo and Brownian dynamic simulations do ob-
— [ 2+ (do/dO)2. serve a transition from a planar, toroidal structure to a spheri-
Four 1= 2maRe L dévp”+ (dpldo) (1) cal globule structure on increased chain length, at fixed

_ _ o _ bending constanf10,19,2Q. However, it is not clear from
The major radius can be eliminated by calculating the volthe simulations that a hole forms at the center of the spheri-

ume using another theorem of Pappus: cal structure. Indeed, given that we have shown above that
2 this hole is quite small, it could be quite difficult to clearly
1= WRJ dép?(6). (12) identify its presence from coarse-grained simulations.
0 In this article we do not consider twist energy. Indeed, we

assume our polymers have a negligible twist constant. For
some double-stranded biopolymers this may not be a valid
assumptior{21]. In this case we anticipate the twist energy

We need to minimizeFyenqgt Fsyur ¢ SUbject to the constraints
that the origin of ther, ) coordinate system lies at the cen-

troid: would have a much greater effect on the spherical globule
2m . than on the(planarlike toroidal geometry(In the toroidal
f dof(6)p™(0) =0, (13)  geometry for most of the chain length the chain can be con-
0 sidered in one planar laygThus we would expect the tran-
wheref(6)=sin(6) and cos6). sition from toroidal to hollow sphere would occur at a larger

We can now minimize our free energy as a functiomof @ value.
and obtain a modified form of the free energy for a torus.

However, this is very close to that of our pre_v@ous simple . MANY-CHAIN SYSTEMS AND DIEFERENT
model for«<1. This means that there is negligible change MORPHOLOGIES
to the critical value ofa, which remains aty.~0.8423.

At the critical value ofa the cross section of the toroid is ~ We now consider the scenario where we have many
very close to being circular. This means that the distortedchains in our system. The first morphology we consider, as
cross sections predicted by Ubbink and Odijk for large for a single chained system, is a thickened toroid. The free
toroids will never exist in equilibrium, since for these large energy for many chains is calculated as before, except we
values ofa we find a hollow sphere is more stable. However,have the volume constraint that the volume of the toroid is
our work does not entirely rule out such distorted toroids, asVLa?, where\ is the number of chains in the system. The
they might exist as a local equilibrium morphology, even if free energy of the thickened toroidal condensate may then be
the global equilibrium is not a torus. It is important to com- easily evaluated as a function 6f.
pare our work with some of the previous work relating to  The next possible configuration of the semiflexible poly-
toroids. In particular, Parlet al. [12] have suggested that mer condensate we consider is a spherical globule. To deter-
packing defects can play an important role in determiningmine the free energy for this configuration is a complicated
toroidal size for the low-density case where a virial expan-task, not least because it is not straightforward as to how the
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stiff tubes will pack into a sphere. For the single-chained
system we neglected any packing problems for the spherical
geometry. Here, we must address this question because it is
apparent the spherical geometry will not have have a hollow
center. For example, close to the center of the sphere, be-
cause there are many chains present, the chains could pack
radially and so be effectively rigid. This would only occur
close to the center of the sphere, further out the chains would
begin to wrap into the spherical geometry. Thus the problem / \
of large(possibly infinitg bending at the center of the sphere
is avoided. To be able to calculate the free energy for a
spherical geometry we shall adopt a simplified packing struc-
ture which is not necessarily the optimal packing structure
for the tubes. In fact, it most likely is not; however, our
structure will give an estimate of the free energy for a spheri-
cal globule. This estimate will be useful in decidirigp- (@)
proximately when such a structure will become a stable
state.
We assume the globule is made up of a series of discs.
Within each disk the chains initially pack radially and then at
some radiug, they bend and pack in concentric circles; see
Fig. 4@. We need to initially determine the trajectory of a
“typical” chain, which in turn will allow us to determine its
bending energy. First we determine the number of chains
which will fully pack a circular disk to radiu®,. To do this
we use a similar method to one given by Williams and Fre-
drickson[22] for the packing of rods in a sphere. We divide
two-dimensional2D) space into circular shells of thickness
| and divide thejth shell at radiugl into n; shells of volume e 5
la? so thatn;=2aj(1/a). If we let m; be the number of tubes (b)
beginnihg in thejth_ layer, _then_the nur_nber of_availqble sites FIG. 4. (a) Schematic of a typical disc of semi-flexible chains.
for E}artlng tubes in I_ayer IS N, _and given byni:2_7-r|(I/a) (Note the figure should be viewed as if all chains and disk are in the
—2j5;m;. In the continuum limit where the radius of the same plane. Not all chains in disk are drawFhe chains pack the
sphere,R,, is much larger tham, we havei=Ry/l and the  gisc up to radiu®R, and then begin to wrap around each other in the
number of rods starting betweeR, and Ry+dR, iS  same disk.(b) A schematic of the pseudospherical globule. The
mM(Ry)dRy. Assuming thatR,<<L, which is most likely for  ends are chopped off so that the final digp and bottorhhasa,
long chains, then the number of available sites for newchains and corresponding radiRs,. The radius of the sphere R
chains at theith layer is E—Zw(RO/a)—fgo’am(r)d(r/a).
Now in the continuum limit one can shom=am(Ry) so that  Rou=(2LRy)*2 Note that if| is the length a chain expends,
we get the following first-order differential equation for On average, to get to the cylindrical surface of radyshen
mM(Ry): wRéa:Nlaz, which givesl=R,/2. At r =R, the tubes emerge
at right angles to the tangent to the cirdés a simplifica-
dm(Ry) _ 27 m(Ry) (14 tion one may understand this in the following way: Consider
dR, T a a ) a cylinder of radiuR, and heighta and to this cylinder are
) ) . ) graftedN(R,) semiflexible chains. One now asks, what is the
The solution is straightforward and isn(Ro)=27l1  pending energy associated with this semiflexible polymer
—-exp(—Ry/a)]. Thus the total number of tubes that pack aprush, as they wrap round the surface of the cylinfiét?
circular disk up to radiu, is N(Ry) and isN(Ry)=2m;  thjs point they begin to bend away from their radial trajec-
=/5?*m(r)d(r/a). On completing the integral we find tory into concentric circlegor spiralg. At each incremental
N(Ry)=27(Ry/a)[1-(a/Ry) +(a/Ry)exp(—-Ry/a)]. Now the  length &r, the number of chains that cross the radRys- or
radius of the diskR,, would be expected to be much larger must be stillN. However, the extra length available to the
thana (certainly for many chains, where we would expectchains must be taken up with the decreased tilt attgl¢he
the spheres to become stahde thata/Ry<1 and to leading radial tangent The tilt angle initially is#/2 and this de-
order N(Ry) =2m(Ry/a). Essentially, the number of chains creases as we begin to wind. The length each chain takes up
emerging from the circular disk is equal to the perimeter are@n the circle at radiu®,+ dr is a/sin ¢ where ¢ is the tilt
of the disk divided by the cross-sectional area of the tubesangle. Asr—«~ we see the tilt anglep goes to zero(as
If the tubes pack radiallyinitially) to some radiu®k; and  expectedl So at any radiufRy+o we have the equality
if all these chains formed a disk of thicknessanits, the total  Na/sin ¢p=27(R,+ 6r) and substituting foN we find at any
radius Ry, of the disk is given bymRZ,a=NL&, so that radiusr, r=R,/sin ¢. Now we requires, the tilt angle at any
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radius, in terms of and 6, the polar angle. Ifi is a unit  minal of 1 in Eq.(17) we have a lower terminal ofR,
vector along the chain trajectory anis a unit vector along +a)/R,=1+(a/Ry).

the tangent to the circle of radius then cosp=n-m. In The globule is made up of stacks of disks and in each disk
polar coordinates the unit tangent vector to the circl&jis layer the chains wind as discussed above. Initially we shall
and a unit vector along the chain &= (dré +rd6&)/[r*  consider the globule to be made up of disks but in each layer
+r2]Y2. Thus cosp=r(6)/[r?+r2]*2 and so sinp=r,/[r?> there is one less chain. This results in a globule shape which
+r(,]1’2. For simplicity we denotelr/dé=r,. (Alternatively, has the approximate shape of a cone of stacked dibles

we know tang=rd@/dr where i is the angle between the cone is not smooth but has a steplike boundary shapee
tangent to the curve and the radial vector. $ow/2—-¢.  extra problem is that we cannot let the number of chains at
From this one can show, once again, gir,/[r?+r2]*2)  either of the ends go to 1, because if it did, the continuum
The desired relationship between tilt angle and polar angl@pproximation breaks down. In addition, this could lead to an
thus vyields the ordinary differential equation=R,(r?  infinite curvature and hence divergent free energy. Hence, we

+r2)12/r .. This equation may be solved analytically with the impose a lower cutoff oé, chains in each of the end layers.

solution We can calculate the surface energy quite readily for such a
geometry and the bending energy using the calculation
r\2 |Y? r\z |¥? above. The free energy for this geometry, however, is not less

=06+ Ro) 1| -arctap| ) -1 , than the energy of a thick toroid for any. It is apparent

from this calculation that the major contribution to the glob-
(195 ules free energy is its surface energy. For the cone of stacked

whered, is the initial polar angle of a particular chain. Each disks shape the major reason the free energy is large is that,
chain in the diskof initial radiusRy) has the same trajectory, P&cause each layer has one less chain, the additional surface
given by Eq.(15). Note that for large (r> R,) the trajectory ~ @réa increases in discrete jumps. It is now clear if we are to
becomesI— f,+ /2 =r /R, or r=R,Ad, whereA g is the (ef- obtain a spherical shaped globule we need to let chains fill
fective) polar angle. Given tha,=Na/(2m) we see that an the gaps between layers—i.e., smooth out the steplike in-
increase in polar angle of72corresponds to the trajectory cre_?s%s. thi ol  the followi del. The alob
increasing by a radius dila, as expected for wrapping of | ?] ON |shw_e imp ?n:eln if _? 0 OW'tngme el. efgﬁ )
chains. Furthermore, the arc length of such a chain is givel'ﬁ'e as/v chains in total. It 1t weré 1o form a pertectly
by s:fggufdr[1+(r0r)2]”2. This integral may be easily com- splherg:al sr;]ape, thEn th? rzra]d{us of th;g/gzlgo%ev\;oudd be

. . B L related to the number of chains viar =NLa“. How-
Efé?edd with Eq.(19) to yield s=L-Ry/2, which is as ex- ever, we shall still consider our globule to be made up of disk

N ire the bendi hich is ai b of chains. In the continuum limit, where our model is valid,
Ow we require the bending energy Which IS given By \ve have a lower cutoff on the number of chains in the end

= p (L p (Toufl) layers. This cutoff isay chains.(We can varya,, but we shall
ﬂ:—f cX(s)ds= —f cA(r)[1 +(r6,)%"2dr. see the results are independent of this artifathus the
keT 2 Ro/2 Finn(Ro) minimum radius of a layefi.e., layers at top and bottom

(16) extremitie$, R,, is given bwaﬁqa:aoLaz. The globule thus
is a sphere but its ends are chopped off; see Rig. #hus
Heres is the arc length along the polymer chain. We needthe volume of the globule is #R(1-(R,/R)?¥q1
c(r) for the bending energy which is calculated e8)  +(R/R,)?/2]/3, and since the globule is assumed to be in-
=(r263+20,+16,)/(1+r26?)*2 In fact this turns out to be compressible and contains no solvent, we have a relationship
relatively simple for our trajectory (15—i.e., ¢  which may be used to determiife
=R;[(r/Rp)?>-1]"*2 which we may use to calculate the

bending energy. Thus the bending energy integral becomes ANLa2= gﬂ'R?’[l - (R/RM1+(RIR)Y2]. (18

P,
I:bend_ P ouer  p

keT  4R,), p?-1

dp, (17 In the limit of R,,< R, which we believe is the case for many
chains, the square root in the above equation can be ex-

_ Y21 N1/2 . .~ panded to the second term. The resultant equation turns out
Wher?pt"“gr_zéq.i/al) “:Ih ' T?e |Ir1:egra!tr:11ayft;(he r((ejadlly .to be a quartic equation fdR which, fortunately, has only

compieted and invoives the natural jogarithm of the denomi o physically correct root which is given by
nator. When this is evaluated at the bottom terminal, it yields

a weak (logarithmig divergence. Physically, the reason for uj’ RE\Y2 |2
this divergence is the following. Our packing constraint is R= 2 1+|2 1+F -1 ' (19)
initially (i.e., atr=R;) too strong and forces the chain to !

bend too sharply. In reality, there is no need to force such avhere u;=vi+v,, v1=(q+AYHY3 4, =(q-AY?)13, g

strict restriction on the chains, as there is sufficient free vol=9V?/(327?), A=R!%/27+(3V/4m)*/4, andV=NLa? Now

ume present for the chains to overcome such a sharp benthat we have the radius we can calculate the surface energy
Mathematically, to overcome the weak divergence we shalbf the globule, which is the surface tension times the surface
calculate the bending energy from one monomer away fronarea. ThusFg, ;=27R*¥{2[1-(R,/R)?]*¥?*+(R,/R)3}. Con-

the initial pointr=R,. Thus rather than having a lower ter- sider now a layer which isa (wherei=1,2,3,..) units
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FIG. 5. Dimensionless free energyof a spherical globulédashed line-a;=10, dot-dashed line-ap=30) and thick toroid(solid line)
versus number of chaingy. (a) Up to 1 chains(the x axis is in units of 18 chaing. (b) For fewer chains showing the crossover from
toroids to spheres.

above the middle layer. Its radius would then R@)=[R?>  ergy of a globule numerically, for incremental total number
—(ia)?]*2. The maximum number of chains that could resideof chains.

in this layer(without carrying outside the boundai(i),) is The results of our calculation are shown in Fig. 5, where
given by the integeiN(i) between(R2(i)/La?)-1<N(@i) We plot dimensionless free energy=Fa’e 'V versus

< m(R2(i)/La?). The additional space that at the moment re-/N—the number of cha_uns |23the globule. We use valueks, of
mains void in each layer is thereford??(i)a— mp?(i)a where a, . andP such thale=10""~0.046 so that a single chain

. . . ) : . would form a toroid, according to Sec. [For this semiflex-
mp*(i)a=N(i)La’. This volume may be filled up with addi- 1" hain the region of stabilgity for toroids isX31077< a
tional chains which wrap around in spirdlnd whose bend- <0.8423) In Fig. 5a) we show the free energy up to 6.0

ing energy is easily evaluatedHowever, to exactly fill each  chains and it is clear that the spherical globule energy is
layer out to the required radius—i.&x(i)—these additional mych less than the thickened toroidal free energy, indicating
chains must traverse into adjacent layers. To do this the pegtability for the sphere. The actual crossover from a thick-
fect packing arrangement of the stacked cone geometry is neied toroid to sphere happens to occur at much laker
maintained close to the surface of the sphere. We neglect théigure §b) shows the free energy at lowaf. Here we show
small inaccuracy which this involves; e.g., the free volume isresults for two different values ddy. (Recall thata, is the

not accounted for correctly and there may be an additionahumber of chains in the end layers and is an artifact which
bending and twisting energy involved in chains traversingwe introduced to simplify our modelWe see for both values
from layer to layer. We can now calculate the total free en-of a, that there exists a crossover from toroid to sphere, the
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larger thea, the larger the crossover, as one would expect. Imough estimates. In reality we would expect much lower
fact for ay=10 the crossover is at approximately=1500 crossovers than predicted heignce our spherical globule
and for a;=30 the crossover is at roughly/=9500. Both  energies are upper boundgve hope this work will stimulate
these values are large enough, not to violate our continuurfurther more accurate numerical models and experiments on
approach. Note that for largd/, these two curves merge many chained systems to observe such a crossover.
together, indicating that the effect of introducing the artifact

ay becomes negligible as the number of chains in the system

becomes large. Hence our results are qualitatively indepen- IV. SUMMARY

dent of the value o&,. Our calculations have shown that at

low chain concentration a toroidal geometry should be stable. : o
while at sufficiently high chain concentrations the spherica les formed fromtstiff) semiflexible polymers when they are

geometry should be stable. A first-order phase transitior?'“.'t. In a poor solvenor with a Condens_lng agentwe have
(from toroids to spheresis predicted at the critical chain Mtally studied the the effect of persistence length versus
concentration where the crossover occurs. Recently Conwefiverall length of a single polymer chain. We have shown
et al.[23] have prepared toroidal DNA condensates from sal@Pove a critical value of the dimensionless parameier
solutions. The toroidal DNA condensate has a mean toroid= @°V**ye a single semiflexible chain will form a hollow
diameter, R, of 55 nm and a mean toroidéross-sectional ~ sphere. This value ia;~ 0.84. Thus on increasing we find
thickness, B, of 25 nm. From this they estimate the conden-initially rods, then toroids and finally spheres. We have also
sate has 6-32 DNA chains. It is hard to compare our theorgonsidered the case of many semiflexible chains in a poor
with Conwell et al. since we do not know their effective solvent. An individual chain will form a tOfOid, but the ques-
value. However, an estimate of around 1000 chains for th&éion is whether many such chains will also form a toroid? We
transition, from our theory, does not seem unreasonablj)ave shown there exists a critical number of chaarscon-
large, given that this is an upper estimate. centration above which the chains will form a densely
Fina”y, we emphasize that our calculations 0n|y gi\/e up-packed sphere. Below this concentration the chains will con-
per estimates of the free energy for the spherical globuledense to a thickened toroid,
Since we have implemented a model where the chains essen- There are obvious applications of the hollow sphere mor-
tially wrap in parallel disks, we have had to introduce thephology discussed here. These are all applications in which
simplification that the sphere has its ends choppediaf, surfactant vesicles are currently involved, most notably in
the minimum chains in end layers &,). Of course real the cosmetic and “controlled-release” drug industries. The
spherical globules will not have such constraints and thugemiflexible polymer system has certain differences with sur-
their energies will be smallefper chain compared to our factant vesicles which might be useful. Most notably, the
energies. It is also most probable that there will be a bettewalls are thick, thus leading to slower release, and can be of
packing arrangement, in general, than what we have usegpntrolled thickness, by adjusting the chain length. In prac-
which would lead to a lower free energy. In fact, very re-tice some precautions would need to be taken to ensure that
Cenﬂy Kulic et al. [24] have ana|yzed a novel packing ar- the chains did not decondense. This could be done for in-
rangement of the tubes in a toroidal condensate. In theigtance by crosslinking after condensation.
model[24] they consider the tubes to run at some angle to To conclude this article we turn from hard calculation to
the main toroidal plane. They find such a packing arrangean observation. In all the forms of life with which the authors
ment may be the real arrangement for thicker toroids. Indeecdre familiar the genetic materidDNA or RNA) is encapsu-
it is possible such an arrangement might also be useful folated in some shell of lipids or proteins. Our hollow sphere
the dense spherical globule. Our spherical energy is therefogonfiguration allows for a novel form of encapsulation where
just an upper estimate of a real spherical globule’s free enthe genetic material itself is the shell.
ergy. From this estimate we can conclude that at sufficiently
high ghain numpersor concentratior)st.he condensed glob- ACKNOWLEDGMENT
ule will be spherical rather than a toroid. The crossover num-
ber of chains we have predicted from our models are just G.G.P. acknowledges financial support from ARC QEII.

In this article we have considered the possible morpholo-
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